
How Formal Methods Impels Discovery:
A Short History of an Air Traffic Management Project

Ricky W. Butler
George Hagen

Jeffrey M. Maddalon
César A. Muñoz

Anthony Narkawicz
NASA Langley Research Center

Hampton, VA 23681, USA

Gilles Dowek
École polytechnique and INRIA

LIX, École polytechnique
91128 Palaiseau Cedex, France

web: http://shemesh.larc.nasa.gov/fm/

Introduction

• Almost two years to complete and four additional formal methods
researchers joined before we were done.

• A very interesting and enjoyable project:

– The work resulted in a very elegant algorithm that is implemented in Java and
C++,

– The final algorithm was very different from our first ideas,

– There were many, many discoveries that were surprising.

– On the surface the problem looks simple, but looks can be deceiving and the
problem is actually very subtle with many special cases.

• After a year, we developed three bands algorithms and published
them in a NASA Technical Memorandum.

• We had formalized much of the mathematical development in PVS
priot to publication but not all.

• Much to our surprise the subsequent final formal proof step found
some deficiencies in our algorithms.

• Deficiencies were repaired – PVS proof Nov 2009.

Motivation For Prevention Bands

How does a pilot know that a maneuver will not cause a near-term
conflict?

What are all the headings that will cause a conflict?

?

150

360 90

6030

210

180

120

330

300

270

240

Prevention Bands show the pilot which maneuvers may cause

• loss of separation within 5 minutes

• loss of separation within 3 minutes

The Problem

(1) Track-Angle (2) Ground-Speed (3) Vertical-Speed
(Iterative & Analytic Solutions)

Notation

so 3D vector Initial position of the ownship aircraft
vo 3D vector Initial velocity of the ownship aircraft
si 3D vector Initial position of the traffic aircraft
vi 3D vector Initial velocity of the traffic aircraft

os

0

iv

ov

is

D

D

D

iss os −=

ov ivv −=

We use the relative frame with
s = so − si.
v = vo − si.

Basic Definitions

A conflict there exists a future time t where the aircraft positions
so + tvo and si + tvi are within a horizontal distance D of each other
and where the aircraft are within vertical distance H of each other.

But it is convenient to decompose this into two predicates and express
it in terms of the relative frame:

• A horizontal conflict occurs if there exists a future time t within the
lookahead time T where the aircraft are within horizontal distance D
of each other, i.e., (sx + tvx)

2 + (sy + tvy)
2 < D2.

• A vertical conflict occurs if there exists a future time t within the
lookahead time T where the aircraft are within horizontal distance
H of each other, i.e., |sz + tvz| < H.

In the relative frame:

conflict?(s, v) ≡ ∃ 0 ≤ t ≤ T :

|s + tv|2 < D2 and |sz + tvz| < H.
(1)

Conflict With Lookahead Time

Exists a time t ∈ [0, T] such that the red plane is inside the cylinder at
time t.

Not Conflict
T T

Conflict

Pairwise Method

We first recognized that each aircraft’s contribution to the prevention
band is independent of all other aircraft; thus, the problem neatly
decomposes into two steps:

1. Solve the bands problem for the ownship relative to each other
aircraft separately.

2. Merge all of the pairwise regions.

Iterative Solution

• We quickly realized that an iterative solution was possible for the
first step.

• We already had a formally proven, efficient algorithm available to us
named CD3D that decides if a conflict occurs for specific values of so,
vo, si, and vi, and parameters D, H, and T .

• Therefore, one need only to execute CD3D iteratively, varying the
track angle from 0 to 360◦ per traffic aircraft.

Search for an Analytical Solution

We begin with a non-translated perspective:

iv = (v , v)
ix iy

oα

o α α

α

v

(|v | cos , |v | sin)o

The track angle is denoted by α: For given vectors vo and vi, we need
to find the track angles α such that the relative vector vα = voα − vi:

vα = (|vo| cosα − vix, |vo| sinα − viy),

is not in conflict.

Initial Approach

• Divide the conflict prevention problem into simplifying cases.

• We decided to first solve the track bands problem in two dimensions
without consideration of the lookahead time.

• The problem thus reduced to finding the tangent lines to the
horizontal protection zone (in the relative frame of reference) as a
function of α.

• We need solutions of |s + tvα| = D or equivalently

(s + tvα)2 = D2 (2)

• Expanding we obtain a quadratic equation at2 + bt + c = 0 with
a = vα

2, b = 2(s · vα), and c = s2 − D2.

• The tangent lines are precisely those where the discriminant of this
equation is zero. In other words, where b2 − 4ac = 0.

Initial Approach (cont)

But, expanding the dot products yield:

b2 = 4[sx(ω cosα − vix) + sy(ω sinα − viy)]
2

4ac = 4(ω2 − 2ω(vix cosα + viysinα) + v2)(s · s − D2)

The discriminant finally expands into a complex second-order
polynomial in sinα and cosα.

But to solve for α, we need to eliminate the cosα using the equation

cosα =
√

1 − sin2α

The net result is an unbelievably complex fourth order polynomial in
sinα:

Sometimes, complex formulas are good.

Initial Approach (cont)

• Solving for α analytically would require the use of the quartic
formulas.

• Although these formulas are complicated, such a program could
probably be written in a day or two.

• But, how would we verify these solutions?

• After all, the quartic equations involve the use of complex analysis.

• Therefore, we began to look for simplifications.

Approach 2

We remembered that a simplification of the discriminant that had been
used in the design of the KB3D algorithm.

b2 − 4ac = 0 ⇐⇒ (s · v) = R ε det(s, v) (3)

where ε ∈ {−1, +1},
det(s, v) ≡ s⊥ · v,
s⊥ = (−sy, sx),

R =
√

s2−D2

D
.

The beauty of the final form is that the equation is linear on v.

The two solutions are captured in the two values of ε.

When we instantiate vα in this formula, we end up with a quadratic
equation in sinα.

Approach 2 (cont)

Using this approach, we were able to derive the following solutions for
α. If |G|√

E2+F 2
≤ 1 then in some 2π range, we have

α1 = asin

(
G

√
E2 + F 2

)
− atan(E, F),

α2 = π − asin

(
G

√
E2 + F 2

)
− atan(E, F),

where

E = ω(Rεsx − sy), F = −ω(Rεsy + sx), G = vi · (Rε s⊥ − s),

Since E, F , and G are all functions of ε, we have two pairs of α1 and
α2 or a total of four total angles.

These angles are the places where the track prevention band changes
color, assuming no lookahead time.

This result was formalized in the PVS theorem prover and implemented
in Java.

Approach 2 (cont)

We were quite pleased with our initial geometric result and decided to
present the result to our branch head and research director (June 2008).

During the presentation,
Cesar Munoz said

“I think you can solve
this problem without
trigonometry!!”

and he urged us to defer the use of trigonometry until the last possible
moment.

In other words, he suggested that we solve for (vα) without expanding
its components.

We knew this was a good idea because so far we had only considered
the 2-dimensional case with no lookahead time and even with these
simplifications the trigonometry was killing us.

Approach 3

We soon realized that the 2D-problem was solvable by the KB3D
resolutions called track lines, computed by the function track_line’:

track_line(s,vo,vi,ε,ι) : Vect2 =

LET u = tangent_line(s,ε),
a = u2,

b = u·vi,

c = v i2 - v o2 IN

IF discriminant(a,2*b,c) ≥ 0 THEN

LET k = root(a,2*b,c,ι) IN

IF k ≥ 0 THEN

ku+vi

ELSE

0
ENDIF

ELSE

0
ENDIF

The function track line returns the vector 0 when all track angles for
the ownship yield a potential conflict.

Since ε and ι are ±1, there are four possible track line solutions for
given s, vo, and vi .

Lookahead Time

There are three distinct cases that appear when the lookahead time is
considered: (a) the protection zone is totally within lookahead time, (b)
the zone is partially within, and (c) the zone is totally beyond the
lookahead time.

TT

(a) (b) (c)

T

Cases (a) and (c) were easy to handle, but we realized that case (b)
was going to be the hard one.

The key to solving track bands with a lookahead time is to find where
the projected lookahead time intersects the protected zone.

Approach 3 (cont)

That is, plot where the relative position of the aircraft will be after T
units of time in every possible direction given an unchanged ground
speed and find the intersection points with the protection zone.

The function track_circle, also available in KB3D, provides these
solutions, which are called track circle solutions.

track_circle(s,vo,vi,t,ε,ι): Vect2 =

LET w = s - tvi,

e = (D2 - s2 - t2(v o2-v i2))/2t IN

IF nz_vect2?(w) THEN

LET v′
o = trk_only_dot(w,vo,vi,e,ι) IN

IF horizontal_dir_at?(s,v′
o-vi,t,ε) THEN

v′
o

ELSE

0
ENDIF

ELSE

0
ENDIF

We believe that the lookahead problem would not have been analytically tractable
using the trigonometric approach pursued at first.

This switch to a pure algebraic approach was fundamental to achieving the final proof

of the 3-dimensional bands algorithm.

The Track Bands Algorithm

We define a critical vector as a relative velocity vector where the color
of the bands may change.

These critical vectors are
Rmm = track line(s, vo, vi, −1, −1),

Rmp = track line(s, vo, vi, −1, +1),

Rpm = track line(s, vo, vi, +1, −1),

Rpp = track line(s, vo, vi, +1, +1),

Crm = track circle(s, vo, vi, Tred, −1),

Crp = track circle(s, vo, vi, Tred, +1),

Cam = track circle(s, vo, vi, Tamber, −1),

Cap = track circle(s, vo, vi, Tamber, +1),

Cem = track circle(s, vo, vi, tentry, −1),

Cep = track circle(s, vo, vi, tentry, +1),

Cxm = track circle(s, vo, vi, texit, −1),

Cxp = track circle(s, vo, vi, texit, +1)

Some of these vectors may be zero vectors in which case they are ignored.

Times tentry and texit are the entry and exit times into the protection zone.

NOTE: There are analogous formulas for ground speed and vertical speed bands.

The Track Bands Algorithm (cont)

Calculate these vectors:

Rmm, Rmp, Rpm, Rpp, Crm, Crp, Cam, Cap, Cem, Cep, Cxm, Cxp

The corresponding track angles (using atan) are computed and sorted
into a list of angles.

Next, the angles 0 and 2π are added to the list to provide appropriate
bounding.

Then, a conflict probe (such as CD3D) is applied to an angle between
each of the critical angles to determine which color the whole region
should be painted: green, amber, or red).

This procedure is iterated between the ownship and all traffic aircraft.

Finally, the resulting bands are merged.

Formal Verification of Pairwise Prevention Bands Algorithms

1. Find a function Ωtrk(s, vo, vi) : R → R:

Ωtrk(α) < 0 ⇐⇒ conflict?(s, vα)

2. Prove that the critical vectors computed in the algorithm find all of
the zeros of the function Ωtrk,

3. Prove that the function Ωtrk is continuous.
4. Use the Intermediate Value theorem to deduce that any point in an

open region, e.g. determines the color of the whole region.

trk
(s,v)

0 2

Mid Point

0

Critical Point:

 Track Angle

(s,v) = 0
trk

Formal Verification via Ω3D

This concept is the notion of a normalized cylindrical length:

||u||cyl = max(

√
u2

x + u2
y

D
,
|uz|
H

). (4)

was the key to finding the needed Ω3D function.

Cylindrical Length ||sss||cyl = 1 ⇐⇒ sss is ”on the cylinder”

D

S
Cyl

S
S

= 1

2H

The Ω function can be defined as follows.

Ω3D(v) = min
t∈[0,T]

||s + t · v||cyl − 1, (5)

Formal Verification (cont)

• Verification Revealed Several Special Cases Where the Original 3-D
Algorithm Was Incorrect

• Verification: 2-D: August 2009 3-D: Nov 2009

The function Ω3D

Ω3D(sss,vvv) = Minimum (Cylindrical) Dist Between Planes During [0,T]

= min
t∈[0,T]

||sss + t · vvv||cyl

• Theorem: Conflict ⇐⇒ Ω3D(sss,vvv) < 1.

• Closed form is very messy

• Recently developed tools to formally verify that Ω3D(sss,vvv) is a
continuous function of vvv

– the general proof of this fact requires the use of vector variant of the
Heine-Cantor Theorem, i.e., if M is a compact metric space, then every
continuous function f : M → N , where N is a metric space, is uniformly
continuous.

– Furthermore, the minimum distance function may have flat areas.

– Therefore, special attention has to be paid to the definition of Ω to guarantee
that the set of critical points is finite.

– Otherwise, it cannot be proven that the critical vector functions are complete.

Verification of this algorithm:

Have we correctly classified all possible trajectories as conflict/not
conflict?

• Ω3D(sss,vvv) is a continuous function of vvv.

• Algorithm finds all critical points of Ω3D.

General theorem in PVS:

Verification of the 3 − D algorithm

• Ω3D(sss,vvv) is a continuous function of vvv. X(Aug/Sept 2009)

• Revised algorithm finds all critical points of Ω3D. X (Sept - Nov
2009)

General theorem in PVS:

Final theorem of algorithm correctness for ground-speed bands

Missing solutions in the track-angle bands algorithm

Two missing track angle solutions to the equation Ω3D(s, v) = 1.

Angles in conflict

Missing solutions in the track-angle bands algorithm

Conflicts enter through the top of the protected zone

H

Results

• The proven functions are slightly different from the original ones
presented in the NASA TM.

• For conflict prevention bands this is a safety issue, because a region
that should be colored red can be colored green instead.

• Interestingly, those functions, which had been tested on over 10,000
test cases without any error manifestations, were in fact incorrect.
The deficiencies in these functions were only found during the formal
verification process!

Verification of the Merge Algorithm

Our original approach relied on complex reasoning about overlapping
regions coupled with precedence rules: an amber region take
precedence over a green region but not a red region.

We developed a Java version that “worked,” but it was soon obvious we
needed to formally verify the merge algorithm.

The formal specification process enabled us to see two problems with
our approach.

• Our algorithm was specialized to the precise problem we were
working; almost any change to the system would require a new
algorithm and therefore a new verification.

• Our algorithm was monolithic: there was no obvious decomposition
into general pieces that could be verified once and used in different
contexts.

To resolve these problems, we soon realized that standard set operations
(set union, set difference, etc.) could be used to implement the merge.

Verification of the Merge Algorithm (cont.)

• By using set operations we had a well-defined specification of the
key parts of our merge algorithm.

• However common implementations of sets in programming languages
do not include efficient ways to deal with ranges of floating point
numbers; therefore, we chose to implement our own.

• We then performed a code-level verification of the set union and set
difference operations that were used in the merge algorithm.

Verification of the Merge Algorithm (cont.)

• The original Java implementation did not clearly indicate whether
the endpoints of a band of green angles were part of that the green
band, or if they were part of the next band (revealed by formal
verification).

• It was not possible to exclusively use closed or open intervals for
both union and difference operations: the use of one necessitates the
use of the other.

– For instance, removing a closed interval, which includes the
endpoints, leaves us with open intervals—everything up to, but
not including, these end points. Also, removing two adjacent open
intervals leads to a left over point between them.

We ended up with the following approach:

• The union operation would assume that inputs would be closed
intervals and therefore, the result would be closed intervals.

• The difference operations would assume that the set to be
subtracted would consist of only open intervals and therefore, the
result would be only of closed intervals.

Verification of the Merge Algorithm (cont.)

• The formal verification of merge algorithm required us to think
deeply about what the merge algorithm was trying to accomplish.

• During this analysis process we were able to develop an elegant
solution which can be presented in a paragraph of text, instead of a
complicated 400 line Java program with many special cases.

• In addition the formal verification process required us to clearly
specify how our algorithm would behave at the points where there is
a transition from one color to another.

Conclusions

• We have presented a short history of the development and formal
verification of prevention bands algorithms.

• The resulting track-angle, ground speed, and vertical speed bands
algorithms are far more simple than our earlier versions.

• The goal of completing a formal proof forced us to search for
simplifications in the algorithms and in the underlying mathematical
theories.

• A key insight that enabled the completion of this work is that
trigonometric analysis should be deferred until the latest possible
time.

• Although, the project took far longer than we expected, we are very
pleased with the elegance and efficiencies of the discovered
algorithms.

